CHAPTER 4

Sensations & Senses

Our Senses & the World

- Characteristics of All Senses

- RECEPTION:
 - Accessory Structures: modify the energy created by something in the person’s environment

Characteristics (continued)

- TRANSDUCTION:
 - process by which a sense organ changes or transforms physical energy into electrical signals that become neural impulses and are sent to the brain
 - Sensory Receptors: (where transduction takes place) specialized cells that detect certain forms of energy

Characteristics (continued)

- ADAPTATION:
 - process by which prolonged or continuous stimulation results in a decreased response by the sense organs.

Neuronal Response

Stimulus

Time
Characteristics (continued)

- Coding:
 - the translation of the physical properties of a stimulus into a pattern of neural activity that specifically identifies those physical properties
 - Specific Nerve Energies: stimulation of a particular sensory nerve provides codes for that one sense, no matter how the stimulation takes place

Sensations vs. Perceptions

- Sensations - outcome of the brain's initial processing of electrical signals from sensory receptors
- Perceptions - outcome of the brain's next step, which is to combine these basic sensations into meaningful experiences

Purpose of Both

- Guidance of Behavior
- Visual Sensations
 - Lines, colors, texture
- Visual Perceptions
 - Seeing an object

Basic Principles of Sensory Systems

- Quality: specialized receptor cells exist to detect each distinct quality
 - e.g. tastes: salty, bitter, sweet, sour, umami
 - e.g. sounds: vary in pitch and complexity
- Quantity / Intensity: signaled by the rate of firing of the receptor cells
 - e.g. tones (loudness); lights (brightness)

Basic Principles of Sensory Systems (continued)

- Timing: sensations start at a particular moment & continue for a measurable period
 - Temporal Code
- Location: sensations may identify where in space a signal came from
 - Spatial Code

Sensory Thresholds & Signal Detection

- Absolute Threshold - weakest stimulus a person can detect half the time
- Difference Threshold - smallest change in a stimulus that produces a change in sensation (Just Noticeable Difference: JND)
Sensory Thresholds & Signal Detection

- Sensory variability can occur because:
 - The physical stimulus may vary
 - The person’s sensory system varies over time (attention, fatigue)
 - Person’s level of motivation may vary
 - Weber’s Law - the increase in stimulus intensity needed to produce a 2nd stimulus that is a JND proportional to the intensity of the 1st stimulus

Structure of the Eye

1. Cornea
2. Pupil
3. Iris
4. Lens
5. Retina

The Eye Ball

- Accommodation - ability to change the shape of the lens, making it more curved to obtain a focused image
 - Too large: nearsighted
 - Too short: farsighted

Visual Pathway: Eye to Brain

- Retina – experience of seeing begins when light waves are reflected back, enter eyes, & are focused on the retina
 - Sensory Receptors = photoreceptors specialized cells that contain photopigments

Visual Pathway: Eye to Brain (continued)

- Rods
 - Photoreceptors specialized for dim-light vision (brightness)
- Cones
 - Photoreceptors specialized for vision in light (color & detail)
Visual Pathway: Eye to Brain
(continued)

- **Fovea (centralis)**
 - Contains only cones (greatest acuity)
- **Ganglion Cells**
 - Neurons that do the final processing of signals within the eye

Visual Pathway: Eye to Brain
(continued)

- **Optic Nerve**
 - Formed from the axons of ganglion cells which carries impulses towards brain
 - Optic Disk – blind spot where the optic nerve exits the eyeball (no photoreceptors)
 - Optic Chiasm – junction in brain where optic nerves converge & axons are rerouted so that a crossing over of visual signals takes place

Visual Pathway: Eye to Brain
(continued)

- **LGN (Lateral Geniculate Nucleus)**
 - A six layered grouping of cell bodies in the thalamus that accepts signals from ganglion cells and sends them to visual cortex
- **Primary Visual Cortex**
 - Located at the back of each occipital lobe
 - Transforms nerve impulses into simple visual sensations (i.e. texture, lines, colors)

Visual Pathway: Eye to Brain
(continued)

- **Association Areas**
 - The primary visual cortex sends simple visual sensations (impulses) to neighboring association areas which add meaning
 - Assembles sensations into a meaningful image
 - Visual Agnosia
 - damage to the association area that results in difficulty recognizing objects or faces

Color Vision Theories

- **Young-Helmholtz Trichromatic Theory**
 - There are three different kinds of cones
 - Each one contains one to three different light-sensitive chemicals called opsins
 - Vision is a ratio of all three colors coded by the pattern of activity in the different cones
Color Vision Theories (continued)

- **Opponent Process Theory**
 - Ganglion cells in the retina and cells in the thalamus respond to pairs of colors
 - Red & Green, Blue & Yellow, Black & White
 - When these cells are excited, they respond to one color of the pair
 - When inhibited they respond to the complimentary pair

- **Opponent Process plus Trichromatic Theory**
 - Combination of both theories
 - Three types of cones
 - Complimentary colors & inhibition

Color Blindness

- Inability to distinguish two or more shades in color spectrum (ROYGBIV)
- Due to lack of genes
 - **Monochromats** – total color blindness (world looks like B&W movies) rare
 - **Dichromats** – have trouble distinguishing red from green because they have just two kinds of cones
 - Found mostly in males

Hearing Sound

- **Sound**
 - A repetitive fluctuation in the pressure of a medium
- **Wave**
 - A repetitive variation in pressure that spreads out in three dimensions
- **Sound Waves**
 - Stimuli for hearing or audition that travel through space with varying height (amplitude) & speed (frequency)

Hearing Sound (continued)

- **Amplitude**
 - The difference in air pressure from the baseline to the peak of the wave
- **Loudness**
 - Subjective experience of a sound's intensity with the brain calculates from specific physical stimuli (amplitude of sound waves)
Hearing Sound (continued)

- **Frequency**
 - The number of complete waves, or cycles, that pass by a given point in space every second

- **Pitch**
 - The subjective experience of a sound being high or low, which the brain calculates from physical stimuli (speed/frequency of sound waves)

Threshold for Hearing

- **Frequencies (Hertz)**
 - Infants: 20 to 20,000 Hz
 - College students: 30 to 18,000 Hz
 - ~70: many have trouble hearing >6,000 Hz

- **Decibel**
 - Unit to measure loudness

Intensity of Sound Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Sound Level dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Launch (from 45m)</td>
<td>180</td>
</tr>
<tr>
<td>Loudest Rock Band on Record</td>
<td>160</td>
</tr>
<tr>
<td>Pain threshold (approximate)</td>
<td>140</td>
</tr>
<tr>
<td>Large jet motor (at 22m)</td>
<td>120</td>
</tr>
<tr>
<td>Loudest human shout on record</td>
<td>111</td>
</tr>
<tr>
<td>Heavy auto traffic, Walkman</td>
<td>100</td>
</tr>
<tr>
<td>Conversation (at about 1m)</td>
<td>60</td>
</tr>
<tr>
<td>Quiet Office</td>
<td>40</td>
</tr>
<tr>
<td>Soft Whisper</td>
<td>20</td>
</tr>
<tr>
<td>Threshold of Hearing</td>
<td>0</td>
</tr>
</tbody>
</table>

Auditory System

- **Outer Ear**
 - External Ear (pinna)
- **Middle Ear**
 - Picks up and amplifies vibrations and passes them on to inner ear
 - Ossicles (3 tiny bones)
 - Malleus (hammer)
 - Incus (anvil)
 - Stapes (stirrup)
- **Oval Window**
 - Receives vibrations from stapes & passes vibrations on to inner ear
Inner Ear

- Cochlea
 - Has a bony coiled exterior, contains receptors for hearing & transforms vibrations into nerve impulses (transduction)
- Hair Cells
 - These auditory receptors arise from the basilar membrane (bottom)
 - Vibration of fluid in cochlear tubes cause the movement of the basilar membrane, which bends the hair cells which triggers nerve impulses
- Auditory Nerve

Inner Ear (continued)

Auditory Areas

- Primary Auditory Cortex
 - Located at top edge of temporal lobe & transforms electrical signals into basic auditory sensations (sounds, tones)
- Auditory Association Area
 - Receives & combines meaningless auditory sensations into meaningful melodies, songs, words &/or sentences

Chemical Senses: Taste

- Taste (Gustation)
 - Four basic tastes: sweet, salty, sour & bitter, umami
 - Surface of tongue consists of narrow trenches.
 - Molecules of food mix with saliva, enter the trenches and stimulate the taste buds

Chemical Senses: Taste (continued)

- Taste Buds – receptors for taste
 - Papillae
 - Produce nerve impulses that reach areas in the parietal lobe
 - Reside in toxic environment, therefore are replaced every ten days
Chemical Senses: Taste (continued)

- All tongues are different
 - 500 - 10,000 taste buds
 - 25% of population are supertasters
 - For all, ability to taste is greatly affected by ability to smell

Chemical Senses: Taste (continued)

- Cultural Diversity – Different Taste
 - Beside an innate preference for sweet & salty taste & an avoidance of bitter substances, most of our tastes are learned.
 - Asmat of New Guinea – grubs
 - Japan – sushi
 - Eskimos – raw fish eyes; whale fat
 - East Africa – blood

Chemical Senses: Taste (continued)

- Taste & Smell
 - We experience FLAVOR when we combine sensations of taste & smell

Chemical Senses: Smell

- Smell (Olfaction)
 - 10,000 times > sensitive than taste
 - Olfactory receptors transform chemical information into nerve impulses

Chemical Senses: Smell (continued)

- Olfactory Cells
 - The receptors for smell are located in two 1-inch-square patches of tissue in upper most part of nasal passages
 - Mucus covers olfactory cells
 - Olfactory cells → olfactory bulbs → primary olfactory cortex (underneath brain) → transforms nerve impulses into olfactory sensations

Chemical Senses: Smell (continued)

- People can identify approximately 10,000 olfactory sensations
- People have approximately 1,000 different types of olfactory receptors
Chemical Senses: Smell (continued)

- Functions
 - Intensify taste of food
 - Warn us away from potentially hazardous foods
 - Elicit strong memories
 - For many animals: to locate food, mates & territory
 - Pheromones

Somatic Senses: Touch

- The sense that includes pressure, temperature, and pain
- Functions
 - To change mechanical pressure or changes in temperature into nerve impulses

Somatic Senses: Touch (continued)

- Skin
 - Outer most layer (stratum corneum)
 - Thin layer of dead cells containing no receptors
 - Middle layer (dermis)
 - Contains a variety of receptors with different shapes and functions
 - Hair Receptors

Somatic Senses: Touch (continued)

- Skin (continued)
 - Free Nerve Endings
 - Thread like extensions in the outer layers of skin which can transmit information about both temperature and pain
 - Pacinian Corpuscle
 - Largest touch sensor which has distinctive layers that are highly sensitive to touch

Somatic Senses: Touch (continued)

- Skin (continued)
 - Somato-Sensory Cortex
 - Located in parietal lobe, transforms nerve impulses into sensations of touch, temperature, and pain

Somatic Senses: Touch (continued)

- Pain (A different sense)
 - Pain arises when stimuli of various kinds activate free endings
 - The somatosensory & limbic areas of brain transform nerve impulses from pain receptors into pain sensations
 - i.e. sharp/localized or dull/generalized
Somatic Senses: Touch (continued)

- Perception of Pain
 - Can be influenced by several factors
 - Competitive impulse, attention, or emotions
 - Endorphins (morphine)
 - Acupuncture

Somatic Senses: Vestibular System

- Located above the cochlea in the inner ear
- Includes 3 semicircular canals which are set at different angles
- Functions
 - Sensing the position of the head, keeping head upright, & maintaining balance

Somatic Senses: Vestibular System (continued)

- Motion Sickness
 - Consists of feelings of discomfort, nausea & dizziness
 - Thought to develop when there is a sensory mismatch between information from the vestibular system and information reported from the eyes

- Malfunctions of the Vestibular System
 - Meniere’s disease
 - Results from the malfunctioning of semi-circular canals. Symptoms include sudden attacks of dizziness, nausea, vomiting, & head-splitting buzzing sounds
 - Vertigo
 - Results from malfunctioning of semi-circular canals. Symptoms include dizziness & nausea

Somatic Senses: Kinesthesia

- The sense that provides information about body movement and position
- Receptor cells are located in nerve endings within and near muscles, tendons & body joints